Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[diaquastrontium]-bis($\mu-2-$ bromobenzoato) $\left.-\kappa^{2} O, O^{\prime}: O^{\prime} ; \kappa^{3} O: O, O^{\prime}\right]$

Bi-Song Zhang

College of Material Science and Chemical Engineering, Jinhua College of Profession and Technology, Jinhua, Zhejiang 321017, People's Republic of China Correspondence e-mail: zbs_jy@163.com

Received 9 October 2009; accepted 29 October 2009
Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.042 ; w R$ factor $=0.130$; data-to-parameter ratio $=14.6$.

The hydrothermal reaction of SrCO_{3} and 2-bromobenzoic acid in $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$ afforded the $\mathrm{Sr}^{\mathrm{II}}$ title polymeric complex, $\left[\mathrm{Sr}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{n}$. Within the coordination sphere, the $\mathrm{Sr}^{\mathrm{II}}$ ion is located on a crystallographic twofold axis, and is coordinated by eight O atoms from two water molecules and four carboxylate groups of 2-bromobenzoate ligands in an irregular coordination geometry. Two μ_{3}-carboxylate groups of the 2-bromobenzoate anions bridge two symmetry-related $\mathrm{Sr}^{\mathrm{II}}$ atoms, giving rise to a chain structure extending along [001]. The polymeric chains are connected via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds interactions into a three-dimensional supramolecular network.

Related literature

For other metal complexes with the 2-bromobenzoato ligand, see: Zhang et al. (2005, 2008); Zhang (2006); Wang et al. (2003). For related structures, see: Zhang (2008); Karipides et al. (1988).

Experimental

Crystal data
$\left[\mathrm{Sr}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=523.68$
Orthorhombic, Pbcn
$a=18.740$ (4) \AA
$b=11.669$ (2) \AA
$c=8.0529(16) \AA$
$V=1760.9$ (6) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=7.62 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
$0.36 \times 0.20 \times 0.16 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.170, T_{\text {max }}=0.309$
12747 measured reflections 1550 independent reflections 1273 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.090$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042 \quad 106$ parameters
$w R\left(F^{2}\right)=0.130$
H -atom parameters constrained
$S=1.14$
1550 reflections
$\Delta \rho_{\max }=0.84 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.78 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.98	$2.753(5)$	156
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 1 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.82	2.81	$3.603(2)$	164

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The author gratefully acknowledges the financial support of the Education office of Zhejiang Province (grant No. 20051316).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2255).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Karipides, A., McKinney, C. \& Peiffer, K. (1988). Acta Cryst. C44, 46-48.
Rigaku (1998). RAPID-AUTO and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wang, R.-F., Wang, S.-P. \& Zhang, J.-J. (2003). J. Mol. Struct. 648, 151-158.
Zhang, B.-S. (2006). Z. Kristallogr. New Cryst. Struct. 221, 511-513.
Zhang, B.-S. (2008). Acta Cryst. E64, m1055-m1056.
Zhang, H.-Y., Zhang, J.-J., Ren, N., Xu, S.-L., Tian, L. \& Bai, J.-H. (2008). J. Alloys Compd, 464, 277-281.
Zhang, B.-S., Zhu, X.-C., Yu, Y.-Y., Chen, L., Chen, Z.-B. \& Hu, Y.-M. (2005). Z. Kristallogr. New Cryst. Struct. 220, 211-212.

supplementary materials

Acta Cryst. (2009). E65, m1500 [doi:10.1107/S1600536809045395]

catena-Poly[[diaquastrontium]-bis(μ-2-bromobenzoato)- $\left.\kappa^{2} O, O^{\prime}: O^{\prime} ; \kappa^{3} O: O, O^{\prime}\right]$

B.-S. Zhang

Comment

Metal ions with 2-bromobenzoato ligands can form, among others, mononuclear, dinuclear complexes (Zhang et al., 2005, 2008; Zhang, 2006; Wang et al., 2003) but very few reports on one-dimensional chain structures complexes including 2-bromobenzoato ligands have been published.

In this paper, we would like to report the synthesis and crystal structure of a one-dimensional chain complex including 2-bromobenzoato and Strontium(II). The crystal structure of the title compound is similar to previously published structures (Zhang, 2008; Karipides et al., 1988). Within the title compound, each $\mathrm{Sr}^{\mathrm{II}}$ ion is located on a crystallographic two-fold axis and is coordinated by eight O atoms from two water molecules and four carboxyl groups of 2-bromobenzoic acid anions in an irregular coordination geometry. Two μ_{3}-carboxyl groups of the 2-bromobenzoic anions bridge two symmetry related Strontium atoms, giving rise to a one-dimensional chain structure extending along the [001] direction, with $\mathrm{Sr}-\mathrm{O}$ bond lengths in the range of 2.498 (3) to 2.753 (4) \AA. Separation between Sr and $\mathrm{Sr}^{i v}$ (symmetry code $i v:-x+1,-y+2,-z+1$) is 4.1703 (8) \AA (Fig. 1). The polymeric chains are connected via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds interactions in a three-dimensional supramolecular structure (Fig. 2). The $\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 3$ and $\mathrm{O} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br} 1$ separations are $2.753 \AA$ and $3.603 \AA$. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Br} 1$ bond angles are 156° and 164°, Table 2.

Experimental

$\mathrm{SrCl}_{2} .6 \mathrm{H}_{2} \mathrm{O}$. ($0.533 \mathrm{~g}, 2.00 \mathrm{mmol}$) was dissolved in the appropriate amount of water, and then $1 \mathrm{M} \mathrm{Na} 2 \mathrm{CO}_{3}$ solution was added. SrCO_{3} was obtained by filtration, which was then washed with distilled water (5 times). The freshly prepared SrCO_{3}, 2-bromobenzoic acid $(0.402 \mathrm{~g}, 2.00 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}(v / v=1: 2,15 \mathrm{ml})$ were mixed and stirred for 2.0 h . Subsequently, the resulting cream suspension was heated in a 23 ml Teflon-lined stainless steel autoclave at 433 K for 5800 minutes. After the autoclave was cooled to room temperature according to the procedure at 2600 minutes, the solid was filtered off. The resulting filtrate was allowed to stand at room temperature, and slow evaporation for 6 weeks afforded colorless block-shaped single crystals.

Refinement

C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$, and were refined using the riding- model approximation. The H atoms of the water molecule were located in a difference Fourier map and refined with an $\mathrm{O}-\mathrm{H}$ distance restraint of $0.82(1) \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

supplementary materials

Figures

Fig. 1. The one-dimensional chain structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A packing diagram of the title complex, viewed along the c axis, The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (dashed lines) in the title compound.

catena-Poly[[diaquastrontium]-bis(μ-2-bromobenzoato)- $\left.\backslash \kappa^{2} O, O^{1}: O^{1} ; \kappa^{3} O: O, O^{\prime}\right]$

Crystal data

$\left[\mathrm{Sr}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{BrO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=523.68$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=18.740$ (4) \AA
$b=11.669(2) \AA$
$c=8.0529(16) \AA$
$V=1760.9(6) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=290 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.170, T_{\text {max }}=0.309$
12747 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$F_{000}=1008$
$D_{\mathrm{x}}=1.975 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9800 reflections
$\theta=3.3-25.0^{\circ}$
$\mu=7.62 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
Block, colorless
$0.36 \times 0.20 \times 0.16 \mathrm{~mm}$

1550 independent reflections
1273 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.090$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=3.3^{\circ}$
$h=-22 \rightarrow 22$
$k=-13 \rightarrow 13$
$l=-9 \rightarrow 8$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0652 P)^{2}+1.8313 P\right]
$$

$w R\left(F^{2}\right)=0.130$	$(\Delta / \sigma)_{\max }<0.001$
$S=1.14$	$\Delta \rho_{\max }=0.84 \mathrm{e} \AA^{-3}$
1550 reflections	$\Delta \rho_{\min }=-0.78 \mathrm{e} \AA^{-3}$
	Extinction correction: SHELXL97 (Sheldrick, 2008),
106 parameters	$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: $0.0016(6)$
Secondary atom site location: difference Fourier map	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{H}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Sr1	0.5000	$0.95347(6)$	0.2500	$0.0294(3)$
Br1	$0.26073(4)$	$1.23028(6)$	$0.28032(9)$	$0.0528(3)$
O1	$0.4082(2)$	$0.8205(4)$	$0.1116(5)$	$0.0577(12)$
H1A	0.4050	0.8178	0.0101	0.087^{*}
H1B	0.3663	0.8112	0.1371	0.087^{*}
O2	$0.5875(3)$	$1.1245(4)$	$0.2207(4)$	$0.0523(13)$
O3	$0.4433(2)$	$1.1017(3)$	$0.0190(4)$	$0.0395(10)$
C1	$0.4152(3)$	$1.1591(4)$	$0.1317(6)$	$0.0335(12)$
C2	$0.3870(3)$	$1.2758(4)$	$0.0915(6)$	$0.0318(12)$
C3	$0.3238(3)$	$1.3201(4)$	$0.1490(6)$	$0.0404(14)$
C4	$0.3005(4)$	$1.4307(5)$	$0.1105(8)$	$0.0475(16)$
H4	0.2569	1.4575	0.1495	0.057^{*}
C5	$0.3434(5)$	$1.4993(5)$	$0.0138(8)$	$0.0549(19)$
H5A	0.3293	1.5739	-0.0105	0.066^{*}
C6	$0.4068(5)$	$1.4582(5)$	$-0.0469(8)$	$0.060(2)$
H6	0.4352	1.5050	-0.1129	0.072^{*}
C7	$0.4288(3)$	$1.3487(5)$	$-0.0113(7)$	$0.0452(15)$
H7	0.4716	1.3218	-0.0549	0.054^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sr1	$0.0387(5)$	$0.0285(4)$	$0.0210(4)$	0.000	$0.0023(3)$	0.000
Br1	$0.0460(5)$	$0.0583(5)$	$0.0542(5)$	$0.0021(3)$	$0.0062(3)$	$0.0062(3)$
O1	$0.058(3)$	$0.077(3)$	$0.038(2)$	$-0.029(2)$	$-0.002(2)$	$0.003(2)$
O2	$0.076(4)$	$0.053(3)$	$0.028(2)$	$-0.026(2)$	$0.007(2)$	$-0.0068(18)$
O3	$0.052(3)$	$0.041(2)$	$0.0251(19)$	$0.0051(18)$	$0.0075(17)$	$-0.0051(16)$
C1	$0.034(3)$	$0.039(3)$	$0.028(3)$	$0.007(2)$	$0.000(2)$	$-0.001(2)$
C2	$0.037(3)$	$0.031(3)$	$0.027(3)$	$0.008(2)$	$-0.003(2)$	$-0.006(2)$
C3	$0.060(4)$	$0.035(3)$	$0.026(3)$	$0.008(3)$	$-0.010(3)$	$0.000(2)$
C4	$0.053(4)$	$0.043(3)$	$0.047(4)$	$0.011(3)$	$-0.009(3)$	$-0.006(3)$
C5	$0.080(6)$	$0.034(3)$	$0.052(4)$	$0.010(3)$	$-0.011(4)$	$0.001(3)$
C6	$0.087(6)$	$0.046(4)$	$0.047(4)$	$-0.014(4)$	$-0.006(4)$	$0.012(3)$
C7	$0.047(4)$	$0.044(3)$	$0.045(3)$	$-0.005(3)$	$0.004(3)$	$0.000(3)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{Sr} 1-\mathrm{O} 3{ }^{\text {i }}$	2.498 (3)	O3-C1	1.244 (6)
Sr1-O3 ${ }^{\text {ii }}$	2.498 (3)	O3-Sr1 ${ }^{\text {i }}$	2.498 (3)
Sr1-O1	2.570 (4)	$\mathrm{C} 1-\mathrm{O} 2{ }^{\text {iii }}$	1.257 (6)
Sr1-O1 ${ }^{\text {iii }}$	2.570 (4)	$\mathrm{C} 1-\mathrm{C} 2$	1.496 (7)
$\mathrm{Sr} 1-\mathrm{O} 2$	2.594 (4)	C2-C3	1.373 (8)
$\mathrm{Sr} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.594 (4)	C2-C7	1.422 (8)
Sr1-O3 ${ }^{\text {iii }}$	2.753 (4)	C3-C4	1.397 (8)
Sr1-O3	2.753 (4)	$\mathrm{C} 4-\mathrm{C} 5$	1.376 (10)
$\mathrm{Sr} 1-\mathrm{C} 1^{\text {iii }}$	3.031 (5)	C4-H4	0.9300
$\mathrm{Sr} 1-\mathrm{C} 1$	3.031 (5)	C5-C6	1.371 (11)
$\mathrm{Br} 1-\mathrm{C} 3$	1.901 (6)	C5-H5A	0.9300
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A}$	0.8200	C6-C7	1.373 (9)
O1-H1B	0.8200	C6-H6	0.9300
$\mathrm{O} 2-\mathrm{C1}{ }^{\text {iii }}$	1.257 (6)	C7-H7	0.9300
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Sr} 1-\mathrm{O} 3{ }^{\text {ii }}$	150.14 (16)	$\mathrm{O} 2-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	83.55 (8)
O3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{O} 1$	75.71 (13)	$\mathrm{O} 2{ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {iv }}$	73.25 (8)
$\mathrm{O} 3^{\text {ii }}-\mathrm{Sr} 1-\mathrm{O} 1$	86.32 (12)	O3 ${ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {iv }}$	35.34 (7)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {iii }}$	86.32 (12)	O3-Sr1-Sr1 ${ }^{\text {iv }}$	119.25 (7)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 1^{\text {iii }}$	75.71 (13)	C1 ${ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	59.36 (10)
$\mathrm{O} 1-\mathrm{Sr1}-\mathrm{O} 1^{\text {iii }}$	105.7 (2)	C1—Sr1—Sr1 ${ }^{\text {iv }}$	95.59 (10)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Sr} 1-\mathrm{O} 2$	81.37 (12)	$\mathrm{O} 3{ }^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	39.61 (8)
$\mathrm{O} 3^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{O} 2$	123.12 (11)	O3ii $-\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {i }}$	154.76 (9)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 2$	147.99 (12)	$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{Sr}^{1}{ }^{\text {i }}$	74.84 (9)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 2$	94.65 (16)	$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {i }}$	125.16 (9)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Sr} 1-\mathrm{O} 2{ }^{\text {iii }}$	123.12 (11)	$\mathrm{O} 2-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	73.25 (8)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 2^{\text {iii }}$	81.37 (12)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {i }}$	83.55 (8)
$\mathrm{O} 1-\mathrm{Sr1}-\mathrm{O} 2^{\text {iii }}$	94.65 (16)	$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{Sr1}{ }^{\text {i }}$	119.25 (7)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 2{ }^{\text {iii }}$	147.99 (12)	$\mathrm{O} 3-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	35.34 (7)
$\mathrm{O} 2-\mathrm{Sr1}-\mathrm{O} 2^{\text {iii }}$	79.4 (2)	C1 ${ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	95.59 (10)
O3 ${ }^{\text {i }}$-Sr1-O3 $3^{\text {iii }}$	125.68 (15)	$\mathrm{C} 1-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	59.36 (9)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 3^{\text {iii }}$	74.95 (13)	Sr1 ${ }^{\text {iv }}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {i }}$	149.82 (4)
O1-Sr1-O3 ${ }^{\text {iii }}$	158.51 (13)	Sr1-O1-H1A	120.4
$\mathrm{O} 1^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{O} 3{ }^{\text {iii }}$	80.09 (12)	Sr1-O1-H1B	127.8
$\mathrm{O} 2-\mathrm{Sr} 1-\mathrm{O} 3^{\text {iii }}$	48.25 (10)	H1A-O1-H1B	99.9
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 3{ }^{\text {iii }}$	72.51 (13)	C1 ${ }^{\text {iii }}-\mathrm{O} 2-\mathrm{Sr} 1$	97.8 (3)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Sr} 1-\mathrm{O} 3$	74.95 (13)	C1-O3-Sr1 ${ }^{\text {i }}$	162.0 (3)
$\mathrm{O} 3{ }^{\text {iii }}$-Sr1-O3	125.68 (15)	$\mathrm{C} 1-\mathrm{O} 3-\mathrm{Sr} 1$	90.5 (3)
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{O} 3$	80.09 (12)	Sr1 ${ }^{\text {i }}$-O3-Sr1	105.05 (13)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 3$	158.51 (13)	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{O} 2{ }^{\text {iii }}$	122.3 (5)

sup-4

$\mathrm{O} 2-\mathrm{Sr1}-\mathrm{O} 3$	72.51 (13)	O3-C1-C2	118.8 (4)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 3$	48.25 (10)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{C} 1-\mathrm{C} 2$	118.9 (4)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{O} 3$	102.18 (15)	$\mathrm{O} 3-\mathrm{Cl}-\mathrm{Sr} 1$	65.3 (3)
O3 ${ }^{\text {i }}$-Sr1- $\mathrm{Cl}^{\text {iii }}$	104.69 (13)	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{C} 1-\mathrm{Sr} 1$	58.0 (3)
$\mathrm{O} 3^{\mathrm{ii}}-\mathrm{Sr} 1-\mathrm{C} 1^{\mathrm{iii}}$	98.88 (13)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{Sr} 1$	166.8 (4)
O1-Sr1-C1 ${ }^{\text {iii }}$	164.74 (14)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	116.5 (5)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Sr} 1-\mathrm{C} 1^{\text {iii }}$	89.49 (15)	C3-C2-C1	125.1 (5)
$\mathrm{O} 2-\mathrm{Sr} 1-\mathrm{C} 1^{\text {iii }}$	24.26 (12)	C7- $22-\mathrm{C} 1$	118.4 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{C} 1^{\text {iii }}$	72.16 (16)	C2-C3-C4	122.8 (6)
$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{Sr} 1-\mathrm{C} 1^{\text {iii }}$	24.23 (11)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Br} 1$	121.1 (4)
O3-Sr1-C1 $1^{\text {iii }}$	85.27 (13)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Br} 1$	116.0 (5)
O3 ${ }^{\text {i }}$ - $\mathrm{Sr} 1-\mathrm{C} 1$	98.88 (13)	C5-C4-C3	118.7 (6)
O3 ${ }^{\text {ii }}-\mathrm{Sr} 1-\mathrm{C} 1$	104.69 (13)	C5-C4-H4	120.6
$\mathrm{O} 1-\mathrm{Sr} 1-\mathrm{C} 1$	89.49 (15)	C3-C4-H4	120.6
$\mathrm{O} 1{ }^{\text {iii }} \mathrm{Sr} 1-\mathrm{C} 1$	164.74 (14)	C6-C5-C4	120.2 (6)
$\mathrm{O} 2-\mathrm{Sr} 1-\mathrm{Cl}$	72.16 (16)	C6-C5-H5A	119.9
$\mathrm{O} 2{ }^{\text {iii }} \mathrm{Sr} 1-\mathrm{C} 1$	24.26 (12)	C4-C5-H5A	119.9
$\mathrm{O} 3{ }^{\text {iii }} \mathrm{Sr} 1-\mathrm{C} 1$	85.27 (13)	C5-C6-C7	120.8 (7)
O3-Sr1-C1	24.23 (11)	C5-C6-H6	119.6
C1 ${ }^{\text {iii }}$-Sr1-C1	75.3 (2)	C7-C6-H6	119.6
$\mathrm{O} 3^{\mathrm{i}}-\mathrm{Sr} 1-\mathrm{Sr} 1^{\mathrm{iv}}$	154.76 (9)	C6-C7- 22	120.8 (6)
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Sr} 1 — \mathrm{Srl}^{\mathrm{iv}}$	39.61 (8)	C6-C7-H7	119.6
$\mathrm{O} 1-\mathrm{Srl}-\mathrm{Sr} 1^{\mathrm{iv}}$	125.16 (9)	C2-C7-H7	119.6
$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Sr} 1-\mathrm{Sr} 1^{\text {iv }}$	74.84 (9)		

Symmetry codes: (i) $-x+1,-y+2,-z$; (ii) $x,-y+2, z+1 / 2$; (iii) $-x+1, y,-z+1 / 2$; (iv) $-x+1,-y+2,-z+1$.

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.98	$2.753(5)$	156
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Br}^{\mathrm{V}}$	0.82	2.81	$3.603(2)$	164

Symmetry codes: (i) $-x+1,-y+2,-z$; (v) $-x+1 / 2, y-1 / 2, z$.

Fig. 1

Fig. 2

